Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Black-box Acceleration of Las Vegas Algorithms and Algorithmic Reverse Jensen's Inequalities (2304.11017v2)

Published 21 Apr 2023 in cs.CC

Abstract: Let $\mathcal{A}$ be a Las Vegas algorithm, i.e. an algorithm whose running time $T$ is a random variable drawn according to a certain probability distribution $p$. In 1993, Luby, Sinclair and Zuckerman [LSZ93] proved that a simple universal restart strategy can, for any probability distribution $p$, provide an algorithm executing $\mathcal{A}$ and whose expected running time is $O(\ell\star_p\log\ell\star_p)$, where $\ell\star_p=\Theta\left(\inf_{q\in (0,1]}Q_p(q)/q\right)$ is the minimum expected running time achievable with full prior knowledge of the probability distribution $p$, and $Q_p(q)$ is the $q$-quantile of $p$. Moreover, the authors showed that the logarithmic term could not be removed for universal restart strategies and was, in a certain sense, optimal. In this work, we show that, quite surprisingly, the logarithmic term can be replaced by a smaller quantity, thus reducing the expected running time in practical settings of interest. More precisely, we propose a novel restart strategy that executes $\mathcal{A}$ and whose expected running time is $O\big(\inf_{q\in (0,1]}\frac{Q_p(q)}{q}\,\psi\big(\log Q_p(q),\,\log (1/q)\big)\big)$ where $\psi(a,b)=1+\min\left{a+b,a\log2 a,\,b\log2 b\right}$. This quantity is, up to a multiplicative factor, better than: 1) the universal restart strategy of [LSZ93], 2) any $q$-quantile of $p$ for $q\in(0,1]$, 3) the original algorithm, and 4) any quantity of the form $\phi{-1}(\mathbb{E}[\phi(T)])$ for a large class of concave functions $\phi$. The latter extends the recent restart strategy of [Zam22] achieving $O\left(e{\mathbb{E}[\ln(T)]}\right)$, and can be thought of as algorithmic reverse Jensen's inequalities. Finally, we show that the behavior of $\frac{t\phi''(t)}{\phi'(t)}$ at infinity controls the existence of reverse Jensen's inequalities by providing a necessary and a sufficient condition for these inequalities to hold.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube