Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Black-box Acceleration of Las Vegas Algorithms and Algorithmic Reverse Jensen's Inequalities (2304.11017v2)

Published 21 Apr 2023 in cs.CC

Abstract: Let $\mathcal{A}$ be a Las Vegas algorithm, i.e. an algorithm whose running time $T$ is a random variable drawn according to a certain probability distribution $p$. In 1993, Luby, Sinclair and Zuckerman [LSZ93] proved that a simple universal restart strategy can, for any probability distribution $p$, provide an algorithm executing $\mathcal{A}$ and whose expected running time is $O(\ell\star_p\log\ell\star_p)$, where $\ell\star_p=\Theta\left(\inf_{q\in (0,1]}Q_p(q)/q\right)$ is the minimum expected running time achievable with full prior knowledge of the probability distribution $p$, and $Q_p(q)$ is the $q$-quantile of $p$. Moreover, the authors showed that the logarithmic term could not be removed for universal restart strategies and was, in a certain sense, optimal. In this work, we show that, quite surprisingly, the logarithmic term can be replaced by a smaller quantity, thus reducing the expected running time in practical settings of interest. More precisely, we propose a novel restart strategy that executes $\mathcal{A}$ and whose expected running time is $O\big(\inf_{q\in (0,1]}\frac{Q_p(q)}{q}\,\psi\big(\log Q_p(q),\,\log (1/q)\big)\big)$ where $\psi(a,b)=1+\min\left{a+b,a\log2 a,\,b\log2 b\right}$. This quantity is, up to a multiplicative factor, better than: 1) the universal restart strategy of [LSZ93], 2) any $q$-quantile of $p$ for $q\in(0,1]$, 3) the original algorithm, and 4) any quantity of the form $\phi{-1}(\mathbb{E}[\phi(T)])$ for a large class of concave functions $\phi$. The latter extends the recent restart strategy of [Zam22] achieving $O\left(e{\mathbb{E}[\ln(T)]}\right)$, and can be thought of as algorithmic reverse Jensen's inequalities. Finally, we show that the behavior of $\frac{t\phi''(t)}{\phi'(t)}$ at infinity controls the existence of reverse Jensen's inequalities by providing a necessary and a sufficient condition for these inequalities to hold.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.