Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Med-Tuning: A New Parameter-Efficient Tuning Framework for Medical Volumetric Segmentation (2304.10880v4)

Published 21 Apr 2023 in cs.CV

Abstract: The "pre-training then fine-tuning (FT)" paradigm is widely adopted to boost the model performance of deep learning-based methods for medical volumetric segmentation. However, conventional full FT incurs high computational and memory costs. Thus, it is of increasing importance to fine-tune pre-trained models for medical volumetric segmentation tasks in a both effective and parameter-efficient manner. In this paper, we introduce a new framework named Med-Tuning to realize parameter-efficient tuning (PET) for medical volumetric segmentation task and an efficient plug-and-play module named Med-Adapter for task-specific feature extraction. With a small number of tuned parameters, our framework enhances the 2D baselines's precision on segmentation tasks, which are pre-trained on natural images. Extensive experiments on three benchmark datasets (CT and MRI modalities) show that our method achieves better results than previous PET methods on volumetric segmentation tasks. Compared to full FT, Med-Tuning reduces the fine-tuned model parameters by up to 4x, with even better segmentation performance. Our project webpage is at \url{https://rubics-xuan.github.io/Med-Tuning/}.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.