Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Downstream Task-Oriented Neural Tokenizer Optimization with Vocabulary Restriction as Post Processing (2304.10808v1)

Published 21 Apr 2023 in cs.CL

Abstract: This paper proposes a method to optimize tokenization for the performance improvement of already trained downstream models. Our method generates tokenization results attaining lower loss values of a given downstream model on the training data for restricting vocabularies and trains a tokenizer reproducing the tokenization results. Therefore, our method can be applied to variety of tokenization methods, while existing work cannot due to the simultaneous learning of the tokenizer and the downstream model. This paper proposes an example of the BiLSTM-based tokenizer with vocabulary restriction, which can capture wider contextual information for the tokenization process than non-neural-based tokenization methods used in existing work. Experimental results on text classification in Japanese, Chinese, and English text classification tasks show that the proposed method improves performance compared to the existing methods for tokenization optimization.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.