Persistently Trained, Diffusion-assisted Energy-based Models (2304.10707v1)
Abstract: Maximum likelihood (ML) learning for energy-based models (EBMs) is challenging, partly due to non-convergence of Markov chain Monte Carlo.Several variations of ML learning have been proposed, but existing methods all fail to achieve both post-training image generation and proper density estimation. We propose to introduce diffusion data and learn a joint EBM, called diffusion assisted-EBMs, through persistent training (i.e., using persistent contrastive divergence) with an enhanced sampling algorithm to properly sample from complex, multimodal distributions. We present results from a 2D illustrative experiment and image experiments and demonstrate that, for the first time for image data, persistently trained EBMs can {\it simultaneously} achieve long-run stability, post-training image generation, and superior out-of-distribution detection.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.