Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple-object Grasping Using a Multiple-suction-cup Vacuum Gripper in Cluttered Scenes (2304.10693v1)

Published 21 Apr 2023 in cs.RO

Abstract: Multiple-suction-cup grasping can improve the efficiency of bin picking in cluttered scenes. In this paper, we propose a grasp planner for a vacuum gripper to use multiple suction cups to simultaneously grasp multiple objects or an object with a large surface. To take on the challenge of determining where to grasp and which cups to activate when grasping, we used 3D convolution to convolve the affordable areas inferred by neural network with the gripper kernel in order to find graspable positions of sampled gripper orientations. The kernel used for 3D convolution in this work was encoded including cup ID information, which helps to directly determine which cups to activate by decoding the convolution results. Furthermore, a sorting algorithm is proposed to find the optimal grasp among the candidates. Our planner exhibited good generality and successfully found multiple-cup grasps in previous affordance map datasets. Our planner also exhibited improved picking efficiency using multiple suction cups in physical robot picking experiments. Compared with single-object (single-cup) grasping, multiple-cup grasping contributed to 1.45x, 1.65x, and 1.16x increases in efficiency for picking boxes, fruits, and daily necessities, respectively.

Citations (4)

Summary

We haven't generated a summary for this paper yet.