Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Projective Proximal Gradient Descent for A Class of Nonconvex Nonsmooth Optimization Problems: Fast Convergence Without Kurdyka-Lojasiewicz (KL) Property (2304.10499v2)

Published 20 Apr 2023 in math.OC and stat.ML

Abstract: Nonconvex and nonsmooth optimization problems are important and challenging for statistics and machine learning. In this paper, we propose Projected Proximal Gradient Descent (PPGD) which solves a class of nonconvex and nonsmooth optimization problems, where the nonconvexity and nonsmoothness come from a nonsmooth regularization term which is nonconvex but piecewise convex. In contrast with existing convergence analysis of accelerated PGD methods for nonconvex and nonsmooth problems based on the Kurdyka-\L{}ojasiewicz (K\L{}) property, we provide a new theoretical analysis showing local fast convergence of PPGD. It is proved that PPGD achieves a fast convergence rate of $\cO(1/k2)$ when the iteration number $k \ge k_0$ for a finite $k_0$ on a class of nonconvex and nonsmooth problems under mild assumptions, which is locally Nesterov's optimal convergence rate of first-order methods on smooth and convex objective function with Lipschitz continuous gradient. Experimental results demonstrate the effectiveness of PPGD.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube