Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Random-prime--fixed-vector randomised lattice-based algorithm for high-dimensional integration (2304.10413v1)

Published 20 Apr 2023 in math.NA and cs.NA

Abstract: We show that a very simple randomised algorithm for numerical integration can produce a near optimal rate of convergence for integrals of functions in the $d$-dimensional weighted Korobov space. This algorithm uses a lattice rule with a fixed generating vector and the only random element is the choice of the number of function evaluations. For a given computational budget $n$ of a maximum allowed number of function evaluations, we uniformly pick a prime $p$ in the range $n/2 < p \le n$. We show error bounds for the randomised error, which is defined as the worst case expected error, of the form $O(n{-\alpha - 1/2 + \delta})$, with $\delta > 0$, for a Korobov space with smoothness $\alpha > 1/2$ and general weights. The implied constant in the bound is dimension-independent given the usual conditions on the weights. We present an algorithm that can construct suitable generating vectors \emph{offline} ahead of time at cost $O(d n4 / \ln n)$ when the weight parameters defining the Korobov spaces are so-called product weights. For this case, numerical experiments confirm our theory that the new randomised algorithm achieves the near optimal rate of the randomised error.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.