Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

DocMAE: Document Image Rectification via Self-supervised Representation Learning (2304.10341v1)

Published 20 Apr 2023 in cs.CV

Abstract: Tremendous efforts have been made on document image rectification, but how to learn effective representation of such distorted images is still under-explored. In this paper, we present DocMAE, a novel self-supervised framework for document image rectification. Our motivation is to encode the structural cues in document images by leveraging masked autoencoder to benefit the rectification, i.e., the document boundaries, and text lines. Specifically, we first mask random patches of the background-excluded document images and then reconstruct the missing pixels. With such a self-supervised learning approach, the network is encouraged to learn the intrinsic structure of deformed documents by restoring document boundaries and missing text lines. Transfer performance in the downstream rectification task validates the effectiveness of our method. Extensive experiments are conducted to demonstrate the effectiveness of our method.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.