Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Observer-Feedback-Feedforward Controller Structures in Reinforcement Learning (2304.10276v1)

Published 20 Apr 2023 in eess.SY, cs.LG, and cs.SY

Abstract: The paper proposes the use of structured neural networks for reinforcement learning based nonlinear adaptive control. The focus is on partially observable systems, with separate neural networks for the state and feedforward observer and the state feedback and feedforward controller. The observer dynamics are modelled by recurrent neural networks while a standard network is used for the controller. As discussed in the paper, this leads to a separation of the observer dynamics to the recurrent neural network part, and the state feedback to the feedback and feedforward network. The structured approach reduces the computational complexity and gives the reinforcement learning based controller an {\em understandable} structure as compared to when one single neural network is used. As shown by simulation the proposed structure has the additional and main advantage that the training becomes significantly faster. Two ways to include feedforward structure are presented, one related to state feedback control and one related to classical feedforward control. The latter method introduces further structure with a separate recurrent neural network that processes only the measured disturbance. When evaluated with simulation on a nonlinear cascaded double tank process, the method with most structure performs the best, with excellent feedforward disturbance rejection gains.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.