Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 28 tok/s Pro
2000 character limit reached

Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick (2304.10074v2)

Published 20 Apr 2023 in cs.LG

Abstract: In this paper, we study using graph neural networks (GNNs) for \textit{multi-node representation learning}, where a representation for a set of more than one node (such as a link) is to be learned. Existing GNNs are mainly designed to learn single-node representations. When used for multi-node representation learning, a common practice is to directly aggregate the single-node representations obtained by a GNN. In this paper, we show a fundamental limitation of such an approach, namely the inability to capture the dependence among multiple nodes in the node set. A straightforward solution is to distinguish target nodes from others. Formalizing this idea, we propose \text{labeling trick}, which first labels nodes in the graph according to their relationships with the target node set before applying a GNN and then aggregates node representations obtained in the labeled graph for multi-node representations. Besides node sets in graphs, we also extend labeling tricks to posets, subsets and hypergraphs. Experiments verify that the labeling trick technique can boost GNNs on various tasks, including undirected link prediction, directed link prediction, hyperedge prediction, and subgraph prediction. Our work explains the superior performance of previous node-labeling-based methods and establishes a theoretical foundation for using GNNs for multi-node representation learning.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube