Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Applying Learning-from-observation to household service robots: three common-sense formulation (2304.09966v1)

Published 19 Apr 2023 in cs.RO

Abstract: Utilizing a robot in a new application requires the robot to be programmed at each time. To reduce such programmings efforts, we have been developing ``Learning-from-observation (LfO)'' that automatically generates robot programs by observing human demonstrations. One of the main issues with introducing this LfO system into the domain of household tasks is the cluttered environments, which cause difficulty in determining which elements are important for task execution when observing demonstrations. To overcome this issue, it is necessary for the system to have common sense shared with the human demonstrator. This paper addresses three relationships that LfO in the household domain should focus on when observing demonstrations and proposes representations to describe the common sense used by the demonstrator for optimal execution of task sequences. Specifically, the paper proposes to use labanotation to describe the postures between the environment and the robot, contact-webs to describe the grasping methods between the robot and the tool, and physical and semantic constraints to describe the motions between the tool and the environment. Then, based on these representations, the paper formulates task models, machine-independent robot programs, that indicate what to do and how to do. Third, the paper explains the task encoder to obtain task models and task decoder to execute the task models on the robot hardware. Finally, this paper presents how the system actually works through several example scenes.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.