Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

What Should Be Balanced in a "Balanced" Face Recognition Dataset? (2304.09818v2)

Published 17 Apr 2023 in cs.CV

Abstract: The issue of demographic disparities in face recognition accuracy has attracted increasing attention in recent years. Various face image datasets have been proposed as 'fair' or 'balanced' to assess the accuracy of face recognition algorithms across demographics. These datasets typically balance the number of identities and images across demographics. It is important to note that the number of identities and images in an evaluation dataset are {\em not} driving factors for 1-to-1 face matching accuracy. Moreover, balancing the number of identities and images does not ensure balance in other factors known to impact accuracy, such as head pose, brightness, and image quality. We demonstrate these issues using several recently proposed datasets. To improve the ability to perform less biased evaluations, we propose a bias-aware toolkit that facilitates creation of cross-demographic evaluation datasets balanced on factors mentioned in this paper.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.