Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Price of Explainability for Clustering (2304.09743v1)

Published 19 Apr 2023 in cs.DS

Abstract: Given a set of points in $d$-dimensional space, an explainable clustering is one where the clusters are specified by a tree of axis-aligned threshold cuts. Dasgupta et al. (ICML 2020) posed the question of the price of explainability: the worst-case ratio between the cost of the best explainable clusterings to that of the best clusterings. We show that the price of explainability for $k$-medians is at most $1+H_{k-1}$; in fact, we show that the popular Random Thresholds algorithm has exactly this price of explanability, matching the known lower bound constructions. We complement our tight analysis of this particular algorithm by constructing instances where the price of explanability (using any algorithm) is at least $(1-o(1)) \ln k$, showing that our result is best possible, up to lower-order terms. We also improve the price of explanability for the $k$-means problem to $O(k \ln \ln k)$ from the previous $O(k \ln k)$, considerably closing the gap to the lower bounds of $\Omega(k)$. Finally, we study the algorithmic question of finding the best explainable clustering: We show that explainable $k$-medians and $k$-means cannot be approximated better than $O(\ln k)$, under standard complexity-theoretic conjectures. This essentially settles the approximability of explainable $k$-medians and leaves open the intriguing possibility to get significantly better approximation algorithms for $k$-means than its price of explainability.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: