Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

The Price of Explainability for Clustering (2304.09743v1)

Published 19 Apr 2023 in cs.DS

Abstract: Given a set of points in $d$-dimensional space, an explainable clustering is one where the clusters are specified by a tree of axis-aligned threshold cuts. Dasgupta et al. (ICML 2020) posed the question of the price of explainability: the worst-case ratio between the cost of the best explainable clusterings to that of the best clusterings. We show that the price of explainability for $k$-medians is at most $1+H_{k-1}$; in fact, we show that the popular Random Thresholds algorithm has exactly this price of explanability, matching the known lower bound constructions. We complement our tight analysis of this particular algorithm by constructing instances where the price of explanability (using any algorithm) is at least $(1-o(1)) \ln k$, showing that our result is best possible, up to lower-order terms. We also improve the price of explanability for the $k$-means problem to $O(k \ln \ln k)$ from the previous $O(k \ln k)$, considerably closing the gap to the lower bounds of $\Omega(k)$. Finally, we study the algorithmic question of finding the best explainable clustering: We show that explainable $k$-medians and $k$-means cannot be approximated better than $O(\ln k)$, under standard complexity-theoretic conjectures. This essentially settles the approximability of explainable $k$-medians and leaves open the intriguing possibility to get significantly better approximation algorithms for $k$-means than its price of explainability.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com