Papers
Topics
Authors
Recent
2000 character limit reached

Entropy Estimation via Uniformization (2304.09700v1)

Published 19 Apr 2023 in cs.IT and math.IT

Abstract: Entropy estimation is of practical importance in information theory and statistical science. Many existing entropy estimators suffer from fast growing estimation bias with respect to dimensionality, rendering them unsuitable for high-dimensional problems. In this work we propose a transform-based method for high-dimensional entropy estimation, which consists of the following two main ingredients. First by modifying the k-NN based entropy estimator, we propose a new estimator which enjoys small estimation bias for samples that are close to a uniform distribution. Second we design a normalizing flow based mapping that pushes samples toward a uniform distribution, and the relation between the entropy of the original samples and the transformed ones is also derived. As a result the entropy of a given set of samples is estimated by first transforming them toward a uniform distribution and then applying the proposed estimator to the transformed samples. The performance of the proposed method is compared against several existing entropy estimators, with both mathematical examples and real-world applications.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.