Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

W-MAE: Pre-trained weather model with masked autoencoder for multi-variable weather forecasting (2304.08754v2)

Published 18 Apr 2023 in cs.LG, cs.AI, and physics.ao-ph

Abstract: Weather forecasting is a long-standing computational challenge with direct societal and economic impacts. This task involves a large amount of continuous data collection and exhibits rich spatiotemporal dependencies over long periods, making it highly suitable for deep learning models. In this paper, we apply pre-training techniques to weather forecasting and propose W-MAE, a Weather model with Masked AutoEncoder pre-training for weather forecasting. W-MAE is pre-trained in a self-supervised manner to reconstruct spatial correlations within meteorological variables. On the temporal scale, we fine-tune the pre-trained W-MAE to predict the future states of meteorological variables, thereby modeling the temporal dependencies present in weather data. We conduct our experiments using the fifth-generation ECMWF Reanalysis (ERA5) data, with samples selected every six hours. Experimental results show that our W-MAE framework offers three key benefits: 1) when predicting the future state of meteorological variables, the utilization of our pre-trained W-MAE can effectively alleviate the problem of cumulative errors in prediction, maintaining stable performance in the short-to-medium term; 2) when predicting diagnostic variables (e.g., total precipitation), our model exhibits significant performance advantages over FourCastNet; 3) Our task-agnostic pre-training schema can be easily integrated with various task-specific models. When our pre-training framework is applied to FourCastNet, it yields an average 20% performance improvement in Anomaly Correlation Coefficient (ACC).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. Abbe, C.: The physical basis of long-range weather forecasts. Monthly Weather Review 29(12), 551–561 (1901) (3) Bjerknes, V.: The problem of weather prediction, considered from the viewpoints of mechanics and physics. Meteorologische Zeitschrift 18(6), 663–667 (2009) (4) Schultz, M.G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L.H., Mozaffari, A., Stadtler, S.: Can deep learning beat numerical weather prediction? Philosophical Transactions of the Royal Society A 379(2194), 20200097 (2021) (5) Irrgang, C., Boers, N., Sonnewald, M., Barnes, E.A., Kadow, C., Staneva, J., Saynisch-Wagner, J.: Towards neural earth system modelling by integrating artificial intelligence in earth system science. Nat. Mach. Intell. 3(8), 667–674 (2021) (6) Robert, A.: A semi-lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. Journal of the Meteorological Society of Japan. Ser. II 60(1), 319–325 (1982) (7) Tóth, Z., Talagrand, O., Candille, G., Zhu, Y.: Probability and ensemble forecasts. In: Jolliffe, I.T., Stephenson, D.B. (eds.) Forecast Verification: A Practitioner’s Guide in Atmospheric Sciences, pp. 137–164. John Wiley and Sons, Chichester (2003) (8) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bjerknes, V.: The problem of weather prediction, considered from the viewpoints of mechanics and physics. Meteorologische Zeitschrift 18(6), 663–667 (2009) (4) Schultz, M.G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L.H., Mozaffari, A., Stadtler, S.: Can deep learning beat numerical weather prediction? Philosophical Transactions of the Royal Society A 379(2194), 20200097 (2021) (5) Irrgang, C., Boers, N., Sonnewald, M., Barnes, E.A., Kadow, C., Staneva, J., Saynisch-Wagner, J.: Towards neural earth system modelling by integrating artificial intelligence in earth system science. Nat. Mach. Intell. 3(8), 667–674 (2021) (6) Robert, A.: A semi-lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. Journal of the Meteorological Society of Japan. Ser. II 60(1), 319–325 (1982) (7) Tóth, Z., Talagrand, O., Candille, G., Zhu, Y.: Probability and ensemble forecasts. In: Jolliffe, I.T., Stephenson, D.B. (eds.) Forecast Verification: A Practitioner’s Guide in Atmospheric Sciences, pp. 137–164. John Wiley and Sons, Chichester (2003) (8) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Schultz, M.G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L.H., Mozaffari, A., Stadtler, S.: Can deep learning beat numerical weather prediction? Philosophical Transactions of the Royal Society A 379(2194), 20200097 (2021) (5) Irrgang, C., Boers, N., Sonnewald, M., Barnes, E.A., Kadow, C., Staneva, J., Saynisch-Wagner, J.: Towards neural earth system modelling by integrating artificial intelligence in earth system science. Nat. Mach. Intell. 3(8), 667–674 (2021) (6) Robert, A.: A semi-lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. Journal of the Meteorological Society of Japan. Ser. II 60(1), 319–325 (1982) (7) Tóth, Z., Talagrand, O., Candille, G., Zhu, Y.: Probability and ensemble forecasts. In: Jolliffe, I.T., Stephenson, D.B. (eds.) Forecast Verification: A Practitioner’s Guide in Atmospheric Sciences, pp. 137–164. John Wiley and Sons, Chichester (2003) (8) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Irrgang, C., Boers, N., Sonnewald, M., Barnes, E.A., Kadow, C., Staneva, J., Saynisch-Wagner, J.: Towards neural earth system modelling by integrating artificial intelligence in earth system science. Nat. Mach. Intell. 3(8), 667–674 (2021) (6) Robert, A.: A semi-lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. Journal of the Meteorological Society of Japan. Ser. II 60(1), 319–325 (1982) (7) Tóth, Z., Talagrand, O., Candille, G., Zhu, Y.: Probability and ensemble forecasts. In: Jolliffe, I.T., Stephenson, D.B. (eds.) Forecast Verification: A Practitioner’s Guide in Atmospheric Sciences, pp. 137–164. John Wiley and Sons, Chichester (2003) (8) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Robert, A.: A semi-lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. Journal of the Meteorological Society of Japan. Ser. II 60(1), 319–325 (1982) (7) Tóth, Z., Talagrand, O., Candille, G., Zhu, Y.: Probability and ensemble forecasts. In: Jolliffe, I.T., Stephenson, D.B. (eds.) Forecast Verification: A Practitioner’s Guide in Atmospheric Sciences, pp. 137–164. John Wiley and Sons, Chichester (2003) (8) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tóth, Z., Talagrand, O., Candille, G., Zhu, Y.: Probability and ensemble forecasts. In: Jolliffe, I.T., Stephenson, D.B. (eds.) Forecast Verification: A Practitioner’s Guide in Atmospheric Sciences, pp. 137–164. John Wiley and Sons, Chichester (2003) (8) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  2. Bjerknes, V.: The problem of weather prediction, considered from the viewpoints of mechanics and physics. Meteorologische Zeitschrift 18(6), 663–667 (2009) (4) Schultz, M.G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L.H., Mozaffari, A., Stadtler, S.: Can deep learning beat numerical weather prediction? Philosophical Transactions of the Royal Society A 379(2194), 20200097 (2021) (5) Irrgang, C., Boers, N., Sonnewald, M., Barnes, E.A., Kadow, C., Staneva, J., Saynisch-Wagner, J.: Towards neural earth system modelling by integrating artificial intelligence in earth system science. Nat. Mach. Intell. 3(8), 667–674 (2021) (6) Robert, A.: A semi-lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. Journal of the Meteorological Society of Japan. Ser. II 60(1), 319–325 (1982) (7) Tóth, Z., Talagrand, O., Candille, G., Zhu, Y.: Probability and ensemble forecasts. In: Jolliffe, I.T., Stephenson, D.B. (eds.) Forecast Verification: A Practitioner’s Guide in Atmospheric Sciences, pp. 137–164. John Wiley and Sons, Chichester (2003) (8) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Schultz, M.G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L.H., Mozaffari, A., Stadtler, S.: Can deep learning beat numerical weather prediction? Philosophical Transactions of the Royal Society A 379(2194), 20200097 (2021) (5) Irrgang, C., Boers, N., Sonnewald, M., Barnes, E.A., Kadow, C., Staneva, J., Saynisch-Wagner, J.: Towards neural earth system modelling by integrating artificial intelligence in earth system science. Nat. Mach. Intell. 3(8), 667–674 (2021) (6) Robert, A.: A semi-lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. Journal of the Meteorological Society of Japan. Ser. II 60(1), 319–325 (1982) (7) Tóth, Z., Talagrand, O., Candille, G., Zhu, Y.: Probability and ensemble forecasts. In: Jolliffe, I.T., Stephenson, D.B. (eds.) Forecast Verification: A Practitioner’s Guide in Atmospheric Sciences, pp. 137–164. John Wiley and Sons, Chichester (2003) (8) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Irrgang, C., Boers, N., Sonnewald, M., Barnes, E.A., Kadow, C., Staneva, J., Saynisch-Wagner, J.: Towards neural earth system modelling by integrating artificial intelligence in earth system science. Nat. Mach. Intell. 3(8), 667–674 (2021) (6) Robert, A.: A semi-lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. Journal of the Meteorological Society of Japan. Ser. II 60(1), 319–325 (1982) (7) Tóth, Z., Talagrand, O., Candille, G., Zhu, Y.: Probability and ensemble forecasts. In: Jolliffe, I.T., Stephenson, D.B. (eds.) Forecast Verification: A Practitioner’s Guide in Atmospheric Sciences, pp. 137–164. John Wiley and Sons, Chichester (2003) (8) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Robert, A.: A semi-lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. Journal of the Meteorological Society of Japan. Ser. II 60(1), 319–325 (1982) (7) Tóth, Z., Talagrand, O., Candille, G., Zhu, Y.: Probability and ensemble forecasts. In: Jolliffe, I.T., Stephenson, D.B. (eds.) Forecast Verification: A Practitioner’s Guide in Atmospheric Sciences, pp. 137–164. John Wiley and Sons, Chichester (2003) (8) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tóth, Z., Talagrand, O., Candille, G., Zhu, Y.: Probability and ensemble forecasts. In: Jolliffe, I.T., Stephenson, D.B. (eds.) Forecast Verification: A Practitioner’s Guide in Atmospheric Sciences, pp. 137–164. John Wiley and Sons, Chichester (2003) (8) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  3. Schultz, M.G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L.H., Mozaffari, A., Stadtler, S.: Can deep learning beat numerical weather prediction? Philosophical Transactions of the Royal Society A 379(2194), 20200097 (2021) (5) Irrgang, C., Boers, N., Sonnewald, M., Barnes, E.A., Kadow, C., Staneva, J., Saynisch-Wagner, J.: Towards neural earth system modelling by integrating artificial intelligence in earth system science. Nat. Mach. Intell. 3(8), 667–674 (2021) (6) Robert, A.: A semi-lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. Journal of the Meteorological Society of Japan. Ser. II 60(1), 319–325 (1982) (7) Tóth, Z., Talagrand, O., Candille, G., Zhu, Y.: Probability and ensemble forecasts. In: Jolliffe, I.T., Stephenson, D.B. (eds.) Forecast Verification: A Practitioner’s Guide in Atmospheric Sciences, pp. 137–164. John Wiley and Sons, Chichester (2003) (8) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Irrgang, C., Boers, N., Sonnewald, M., Barnes, E.A., Kadow, C., Staneva, J., Saynisch-Wagner, J.: Towards neural earth system modelling by integrating artificial intelligence in earth system science. Nat. Mach. Intell. 3(8), 667–674 (2021) (6) Robert, A.: A semi-lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. Journal of the Meteorological Society of Japan. Ser. II 60(1), 319–325 (1982) (7) Tóth, Z., Talagrand, O., Candille, G., Zhu, Y.: Probability and ensemble forecasts. In: Jolliffe, I.T., Stephenson, D.B. (eds.) Forecast Verification: A Practitioner’s Guide in Atmospheric Sciences, pp. 137–164. John Wiley and Sons, Chichester (2003) (8) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Robert, A.: A semi-lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. Journal of the Meteorological Society of Japan. Ser. II 60(1), 319–325 (1982) (7) Tóth, Z., Talagrand, O., Candille, G., Zhu, Y.: Probability and ensemble forecasts. In: Jolliffe, I.T., Stephenson, D.B. (eds.) Forecast Verification: A Practitioner’s Guide in Atmospheric Sciences, pp. 137–164. John Wiley and Sons, Chichester (2003) (8) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tóth, Z., Talagrand, O., Candille, G., Zhu, Y.: Probability and ensemble forecasts. In: Jolliffe, I.T., Stephenson, D.B. (eds.) Forecast Verification: A Practitioner’s Guide in Atmospheric Sciences, pp. 137–164. John Wiley and Sons, Chichester (2003) (8) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  4. Irrgang, C., Boers, N., Sonnewald, M., Barnes, E.A., Kadow, C., Staneva, J., Saynisch-Wagner, J.: Towards neural earth system modelling by integrating artificial intelligence in earth system science. Nat. Mach. Intell. 3(8), 667–674 (2021) (6) Robert, A.: A semi-lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. Journal of the Meteorological Society of Japan. Ser. II 60(1), 319–325 (1982) (7) Tóth, Z., Talagrand, O., Candille, G., Zhu, Y.: Probability and ensemble forecasts. In: Jolliffe, I.T., Stephenson, D.B. (eds.) Forecast Verification: A Practitioner’s Guide in Atmospheric Sciences, pp. 137–164. John Wiley and Sons, Chichester (2003) (8) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Robert, A.: A semi-lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. Journal of the Meteorological Society of Japan. Ser. II 60(1), 319–325 (1982) (7) Tóth, Z., Talagrand, O., Candille, G., Zhu, Y.: Probability and ensemble forecasts. In: Jolliffe, I.T., Stephenson, D.B. (eds.) Forecast Verification: A Practitioner’s Guide in Atmospheric Sciences, pp. 137–164. John Wiley and Sons, Chichester (2003) (8) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tóth, Z., Talagrand, O., Candille, G., Zhu, Y.: Probability and ensemble forecasts. In: Jolliffe, I.T., Stephenson, D.B. (eds.) Forecast Verification: A Practitioner’s Guide in Atmospheric Sciences, pp. 137–164. John Wiley and Sons, Chichester (2003) (8) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  5. Robert, A.: A semi-lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. Journal of the Meteorological Society of Japan. Ser. II 60(1), 319–325 (1982) (7) Tóth, Z., Talagrand, O., Candille, G., Zhu, Y.: Probability and ensemble forecasts. In: Jolliffe, I.T., Stephenson, D.B. (eds.) Forecast Verification: A Practitioner’s Guide in Atmospheric Sciences, pp. 137–164. John Wiley and Sons, Chichester (2003) (8) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tóth, Z., Talagrand, O., Candille, G., Zhu, Y.: Probability and ensemble forecasts. In: Jolliffe, I.T., Stephenson, D.B. (eds.) Forecast Verification: A Practitioner’s Guide in Atmospheric Sciences, pp. 137–164. John Wiley and Sons, Chichester (2003) (8) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  6. Tóth, Z., Talagrand, O., Candille, G., Zhu, Y.: Probability and ensemble forecasts. In: Jolliffe, I.T., Stephenson, D.B. (eds.) Forecast Verification: A Practitioner’s Guide in Atmospheric Sciences, pp. 137–164. John Wiley and Sons, Chichester (2003) (8) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  7. Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227(7), 3515–3539 (2008) (9) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  8. Chattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., Kashinath, K.: Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers. CoRR abs/2103.09360 (2021) (10) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  9. Racah, E., Beckham, C., Maharaj, T., Kahou, S.E., Prabhat, Pal, C.: Extremeweather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 3402–3413 (2017) (11) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  10. Biswas, M., Dhoom, T., Barua, S.: Weather forecast prediction: An integrated approach for analyzing and measuring weather data. International Journal of Computer Applications 182(34), 20–24 (2018) (12) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  11. Semenov, M.A., Brooks, R.J., Barrow, E.M., Richardson, C.W.: Comparison of the wgen and lars-wg stochastic weather generators for diverse climates. Climate research 10(2), 95–107 (1998) (13) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  12. Castro, R., Souto, Y.M., Ogasawara, E.S., Porto, F., Bezerra, E.: Stconvs2s: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426, 285–298 (2021) (14) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  13. Han, J., Liu, H., Zhu, H., Xiong, H., Dou, D.: Joint air quality and weather prediction based on multi-adversarial spatiotemporal networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 4081–4089 (2021) (15) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  14. Park, S.K., Xu, L. (eds.): Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin (2013) (16) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  15. Esener, İ.I., Yüksel, T., Kurban, M.: Short-term load forecasting without meteorological data using ai-based structures. Turkish Journal of Electrical Engineering and Computer Sciences 23(2), 370–380 (2015) (17) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  16. Albu, A., Czibula, G., Mihai, A., Czibula, I.G., Burcea, S., Mezghani, A.: Nextnow: A convolutional deep learning model for the prediction of weather radar data for nowcasting purposes. Remote. Sens. 14(16), 3890 (2022) (18) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  17. Dewitte, S., Cornelis, J., Müller, R., Munteanu, A.: Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sensing 13(16), 3209 (2021) (19) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  18. Diao, L., Niu, D., Zang, Z., Chen, C.: Short-term weather forecast based on wavelet denoising and catboost. In: 2019 Chinese Control Conference (CCC), pp. 3760–3764 (2019) (20) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  19. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019) (21) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  20. Huang, H., Liang, Y., Duan, N., Gong, M., Shou, L., Jiang, D., Zhou, M.: Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 2485–2494 (2019) (22) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  21. Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 11336–11344 (2020) (23) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  22. Tian, F., Gao, Y., Fang, Z., Fang, Y., Gu, J., Fujita, H., Hwang, J.: Depth estimation using a self-supervised network based on cross-layer feature fusion and the quadtree constraint. IEEE Trans. Circuits Syst. Video Technol. 32(4), 1751–1766 (2022) (24) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  23. Li, Y., Gao, Y., Chen, B., Zhang, Z., Lu, G., Zhang, D.: Self-supervised exclusive-inclusive interactive learning for multi-label facial expression recognition in the wild. IEEE Trans. Circuits Syst. Video Technol. 32(5), 3190–3202 (2022) (25) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  24. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021) (26) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  25. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.B.: Masked autoencoders are scalable vision learners. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979–15988 (2022) (27) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  26. Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems 13(2), 2020–002405 (2021) (28) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  27. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008 (2017) (29) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  28. Faisal, A.N.M.F., Rahman, A., Habib, M.T.M., Siddique, A.H., Hasan, M., Khan, M.M.: Neural networks based multivariate time series forecasting of solar radiation using meteorological data of different cities of bangladesh. Results in Engineering 13, 100365 (2022) (30) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  29. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., et al.: The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049 (2020) (31) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  30. Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., Anandkumar, A.: Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. CoRR abs/2202.11214 (2022) (32) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  31. Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S.V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., Battaglia, P.W.: Graphcast: Learning skillful medium-range global weather forecasting. CoRR abs/2212.12794 (2022) (33) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  32. Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. CoRR abs/2211.02556 (2022) (34) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  33. Rodwell, M.J., Richardson, D.S., Hewson, T.D., Haiden, T.: A new equitable score suitable for verifying precipitation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society 136(650), 1344–1363 (2010) (35) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  34. Arakawa, A.: Adjustment mechanisms in atmospheric models. Journal of the Meteorological Society of Japan 75(1B), 155–179 (1997) (36) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  35. Stensrud, D.J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, Cambridge (2007) (37) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  36. Arakawa, A.: The cumulus parameterization problem: Past, present, and future. Journal of Climate 17(13), 2493–2525 (2004) (38) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  37. Grenier, H., Bretherton, C.S.: A moist pbl parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3), 357–377 (2001) (39) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  38. Han, Y., Mi, L., Shen, L., Cai, C.S., Liu, Y., Li, K., Xu, G.: A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Applied Energy 312, 118777 (2022) (40) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  39. Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., Yang, C.: A hybrid cnn-lstm model for typhoon formation forecasting. GeoInformatica 23, 375–396 (2019) (41) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  40. Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems 12(11), 2020–002203 (2020) (42) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  41. Keisler, R.: Forecasting global weather with graph neural networks. CoRR abs/2202.07575 (2022) (43) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  42. Karevan, Z., Suykens, J.A.K.: Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks 125, 1–9 (2020) (44) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  43. Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., et al.: The thorpex interactive grand global ensemble. Bulletin of the American Meteorological Society 91(8), 1059–1072 (2010) (45) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  44. Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR abs/2111.13587 (2021) (46) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  45. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019) (47) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  46. Martin, G.M., Milton, S.F., Senior, C.A., Brooks, M.E., Ineson, S., Reichler, T., Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. Journal of Climate 23(22), 5933–5957 (2010) (48) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013) Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
  47. Hoskins, B.: The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Quarterly Journal of the Royal Meteorological Society 139(672), 573–584 (2013)
Citations (21)

Summary

We haven't generated a summary for this paper yet.