Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 74 tok/s
Gemini 2.5 Flash 163 tok/s Pro
Gemini 2.5 Pro 46 tok/s Pro
Kimi K2 200 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Addressing Variable Dependency in GNN-based SAT Solving (2304.08738v1)

Published 18 Apr 2023 in cs.AI

Abstract: Boolean satisfiability problem (SAT) is fundamental to many applications. Existing works have used graph neural networks (GNNs) for (approximate) SAT solving. Typical GNN-based end-to-end SAT solvers predict SAT solutions concurrently. We show that for a group of symmetric SAT problems, the concurrent prediction is guaranteed to produce a wrong answer because it neglects the dependency among Boolean variables in SAT problems. % We propose AsymSAT, a GNN-based architecture which integrates recurrent neural networks to generate dependent predictions for variable assignments. The experiment results show that dependent variable prediction extends the solving capability of the GNN-based method as it improves the number of solved SAT instances on large test sets.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.