Papers
Topics
Authors
Recent
2000 character limit reached

Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop on the Graphcore IPU (2304.08662v1)

Published 17 Apr 2023 in cs.DC and q-bio.GN

Abstract: Dedicated accelerator hardware has become essential for processing AI-based workloads, leading to the rise of novel accelerator architectures. Furthermore, fundamental differences in memory architecture and parallelism have made these accelerators targets for scientific computing. The sequence alignment problem is fundamental in bioinformatics; we have implemented the $X$-Drop algorithm, a heuristic method for pairwise alignment that reduces search space, on the Graphcore Intelligence Processor Unit (IPU) accelerator. The $X$-Drop algorithm has an irregular computational pattern, which makes it difficult to accelerate due to load balancing. Here, we introduce a graph-based partitioning and queue-based batch system to improve load balancing. Our implementation achieves $10\times$ speedup over a state-of-the-art GPU implementation and up to $4.65\times$ compared to CPU. In addition, we introduce a memory-restricted $X$-Drop algorithm that reduces memory footprint by $55\times$ and efficiently uses the IPU's limited low-latency SRAM. This optimization further improves the strong scaling performance by $3.6\times$.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.