Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

RS2G: Data-Driven Scene-Graph Extraction and Embedding for Robust Autonomous Perception and Scenario Understanding (2304.08600v2)

Published 17 Apr 2023 in cs.CV and cs.LG

Abstract: Effectively capturing intricate interactions among road users is of critical importance to achieving safe navigation for autonomous vehicles. While graph learning (GL) has emerged as a promising approach to tackle this challenge, existing GL models rely on predefined domain-specific graph extraction rules that often fail in real-world drastically changing scenarios. Additionally, these graph extraction rules severely impede the capability of existing GL methods to generalize knowledge across domains. To address this issue, we propose RoadScene2Graph (RS2G), an innovative autonomous scenario understanding framework with a novel data-driven graph extraction and modeling approach that dynamically captures the diverse relations among road users. Our evaluations demonstrate that on average RS2G outperforms the state-of-the-art (SOTA) rule-based graph extraction method by 4.47% and the SOTA deep learning model by 22.19% in subjective risk assessment. More importantly, RS2G delivers notably better performance in transferring knowledge gained from simulation environments to unseen real-world scenarios.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.