Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

CAViaR: Context Aware Video Recommendations (2304.08435v1)

Published 17 Apr 2023 in cs.IR and cs.LG

Abstract: Many recommendation systems rely on point-wise models, which score items individually. However, point-wise models generating scores for a video are unable to account for other videos being recommended in a query. Due to this, diversity has to be introduced through the application of heuristic-based rules, which are not able to capture user preferences, or make balanced trade-offs in terms of diversity and item relevance. In this paper, we propose a novel method which introduces diversity by modeling the impact of low diversity on user's engagement on individual items, thus being able to account for both diversity and relevance to adjust item scores. The proposed method is designed to be easily pluggable into existing large-scale recommender systems, while introducing minimal changes in the recommendations stack. Our models show significant improvements in offline metrics based on the normalized cross entropy loss compared to production point-wise models. Our approach also shows a substantial increase of 1.7% in topline engagements coupled with a 1.5% increase in daily active users in an A/B test with live traffic on Facebook Watch, which translates into an increase of millions in the number of daily active users for the product.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.