Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Code-centric Learning-based Just-In-Time Vulnerability Detection (2304.08396v1)

Published 17 Apr 2023 in cs.SE

Abstract: Attacks against computer systems exploiting software vulnerabilities can cause substantial damage to the cyber-infrastructure of our modern society and economy. To minimize the consequences, it is vital to detect and fix vulnerabilities as soon as possible. Just-in-time vulnerability detection (JIT-VD) discovers vulnerability-prone ("dangerous") commits to prevent them from being merged into source code and causing vulnerabilities. By JIT-VD, the commits' authors, who understand the commits properly, can review these dangerous commits and fix them if necessary while the relevant modifications are still fresh in their minds. In this paper, we propose CodeJIT, a novel code-centric learning-based approach for just-in-time vulnerability detection. The key idea of CodeJIT is that the meaning of the code changes of a commit is the direct and deciding factor for determining if the commit is dangerous for the code. Based on that idea, we design a novel graph-based representation to represent the semantics of code changes in terms of both code structures and program dependencies. A graph neural network model is developed to capture the meaning of the code changes represented by our graph-based representation and learn to discriminate between dangerous and safe commits. We conducted experiments to evaluate the JIT-VD performance of CodeJIT on a dataset of 20K+ dangerous and safe commits in 506 real-world projects from 1998 to 2022. Our results show that CodeJIT significantly improves the state-of-the-art JIT-VD methods by up to 66% in Recall, 136% in Precision, and 68% in F1. Moreover, CodeJIT correctly classifies nearly 9/10 of dangerous/safe (benign) commits and even detects 69 commits that fix a vulnerability yet produce other issues in source code

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.