Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

A study on a Q-Learning algorithm application to a manufacturing assembly problem (2304.08375v1)

Published 17 Apr 2023 in cs.LG

Abstract: The development of machine learning algorithms has been gathering relevance to address the increasing modelling complexity of manufacturing decision-making problems. Reinforcement learning is a methodology with great potential due to the reduced need for previous training data, i.e., the system learns along time with actual operation. This study focuses on the implementation of a reinforcement learning algorithm in an assembly problem of a given object, aiming to identify the effectiveness of the proposed approach in the optimisation of the assembly process time. A model-free Q-Learning algorithm is applied, considering the learning of a matrix of Q-values (Q-table) from the successive interactions with the environment to suggest an assembly sequence solution. This implementation explores three scenarios with increasing complexity so that the impact of the Q-Learning\textsc's parameters and rewards is assessed to improve the reinforcement learning agent performance. The optimisation approach achieved very promising results by learning the optimal assembly sequence 98.3% of the times.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube