Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Comparative Study between Full-Parameter and LoRA-based Fine-Tuning on Chinese Instruction Data for Instruction Following Large Language Model

Published 17 Apr 2023 in cs.CL | (2304.08109v2)

Abstract: Recently, the instruction-tuning of LLMs is a crucial area of research in the field of natural language processing. Due to resource and cost limitations, several researchers have employed parameter-efficient tuning techniques, such as LoRA, for instruction tuning, and have obtained encouraging results In comparison to full-parameter fine-tuning, LoRA-based tuning demonstrates salient benefits in terms of training costs. In this study, we undertook experimental comparisons between full-parameter fine-tuning and LoRA-based tuning methods, utilizing LLaMA as the base model. The experimental results show that the selection of the foundational model, training dataset scale, learnable parameter quantity, and model training cost are all important factors. We hope that the experimental conclusions of this paper can provide inspiration for training LLMs, especially in the field of Chinese, and help researchers find a better trade-off strategy between training cost and model performance. To facilitate the reproduction of the paper's results, the dataset, model and code will be released.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.