Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 89 tok/s
Gemini 2.5 Flash 155 tok/s Pro
Gemini 2.5 Pro 51 tok/s Pro
Kimi K2 209 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Fast Random Approximation of Multi-channel Room Impulse Response (2304.08052v1)

Published 17 Apr 2023 in cs.SD and eess.AS

Abstract: Modern neural-network-based speech processing systems are typically required to be robust against reverberation, and the training of such systems thus needs a large amount of reverberant data. During the training of the systems, on-the-fly simulation pipeline is nowadays preferred as it allows the model to train on infinite number of data samples without pre-generating and saving them on harddisk. An RIR simulation method thus needs to not only generate more realistic artificial room impulse response (RIR) filters, but also generate them in a fast way to accelerate the training process. Existing RIR simulation tools have proven effective in a wide range of speech processing tasks and neural network architectures, but their usage in on-the-fly simulation pipeline remains questionable due to their computational complexity or the quality of the generated RIR filters. In this paper, we propose FRAM-RIR, a fast random approximation method of the widely-used image-source method (ISM), to efficiently generate realistic multi-channel RIR filters. FRAM-RIR bypasses the explicit calculation of sound propagation paths in ISM-based algorithms by randomly sampling the location and number of reflections of each virtual sound source based on several heuristic assumptions, while still maintains accurate direction-of-arrival (DOA) information of all sound sources. Visualization of oracle beampatterns and directional features shows that FRAM-RIR can generate more realistic RIR filters than existing widely-used ISM-based tools, and experiment results on multi-channel noisy speech separation and dereverberation tasks with a wide range of neural network architectures show that models trained with FRAM-RIR can also achieve on par or better performance on real RIRs compared to other RIR simulation tools with a significantly accelerated training procedure. A Python implementation of FRAM-RIR is released.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.