Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

PerCoNet: News Recommendation with Explicit Persona and Contrastive Learning (2304.07923v1)

Published 17 Apr 2023 in cs.IR

Abstract: Personalized news recommender systems help users quickly find content of their interests from the sea of information. Today, the mainstream technology for personalized news recommendation is based on deep neural networks that can accurately model the semantic match between news items and users' interests. In this paper, we present \textbf{PerCoNet}, a novel deep learning approach to personalized news recommendation which features two new findings: (i) representing users through \emph{explicit persona analysis} based on the prominent entities in their recent news reading history could be more effective than latent persona analysis employed by most existing work, with a side benefit of enhanced explainability; (ii) utilizing the title and abstract of each news item via cross-view \emph{contrastive learning} would work better than just combining them directly. Extensive experiments on two real-world news datasets clearly show the superior performance of our proposed approach in comparison with current state-of-the-art techniques.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.