Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Virtual Simulation-Pilot Agent for Training of Air Traffic Controllers (2304.07842v1)

Published 16 Apr 2023 in eess.AS, cs.AI, and cs.HC

Abstract: In this paper we propose a novel virtual simulation-pilot engine for speeding up air traffic controller (ATCo) training by integrating different state-of-the-art AI based tools. The virtual simulation-pilot engine receives spoken communications from ATCo trainees, and it performs automatic speech recognition and understanding. Thus, it goes beyond only transcribing the communication and can also understand its meaning. The output is subsequently sent to a response generator system, which resembles the spoken read back that pilots give to the ATCo trainees. The overall pipeline is composed of the following submodules: (i) automatic speech recognition (ASR) system that transforms audio into a sequence of words; (ii) high-level air traffic control (ATC) related entity parser that understands the transcribed voice communication; and (iii) a text-to-speech submodule that generates a spoken utterance that resembles a pilot based on the situation of the dialogue. Our system employs state-of-the-art AI-based tools such as Wav2Vec 2.0, Conformer, BERT and Tacotron models. To the best of our knowledge, this is the first work fully based on open-source ATC resources and AI tools. In addition, we have developed a robust and modular system with optional submodules that can enhance the system's performance by incorporating real-time surveillance data, metadata related to exercises (such as sectors or runways), or even introducing a deliberate read-back error to train ATCo trainees to identify them. Our ASR system can reach as low as 5.5% and 15.9% word error rates (WER) on high and low-quality ATC audio. We also demonstrate that adding surveillance data into the ASR can yield callsign detection accuracy of more than 96%.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube