Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

ODSmoothGrad: Generating Saliency Maps for Object Detectors (2304.07609v1)

Published 15 Apr 2023 in cs.CV

Abstract: Techniques for generating saliency maps continue to be used for explainability of deep learning models, with efforts primarily applied to the image classification task. Such techniques, however, can also be applied to object detectors, not only with the classification scores, but also for the bounding box parameters, which are regressed values for which the relevant pixels contributing to these parameters can be identified. In this paper, we present ODSmoothGrad, a tool for generating saliency maps for the classification and the bounding box parameters in object detectors. Given the noisiness of saliency maps, we also apply the SmoothGrad algorithm to visually enhance the pixels of interest. We demonstrate these capabilities on one-stage and two-stage object detectors, with comparisons using classifier-based techniques.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.