Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ODSmoothGrad: Generating Saliency Maps for Object Detectors (2304.07609v1)

Published 15 Apr 2023 in cs.CV

Abstract: Techniques for generating saliency maps continue to be used for explainability of deep learning models, with efforts primarily applied to the image classification task. Such techniques, however, can also be applied to object detectors, not only with the classification scores, but also for the bounding box parameters, which are regressed values for which the relevant pixels contributing to these parameters can be identified. In this paper, we present ODSmoothGrad, a tool for generating saliency maps for the classification and the bounding box parameters in object detectors. Given the noisiness of saliency maps, we also apply the SmoothGrad algorithm to visually enhance the pixels of interest. We demonstrate these capabilities on one-stage and two-stage object detectors, with comparisons using classifier-based techniques.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Chul Gwon (3 papers)
  2. Steven C. Howell (1 paper)
Citations (3)

Summary

We haven't generated a summary for this paper yet.