Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Icospherical Chemical Objects (ICOs) allow for chemical data augmentation and maintain rotational, translation and permutation invariance (2304.07558v1)

Published 15 Apr 2023 in cs.LG

Abstract: Dataset augmentation is a common way to deal with small datasets; Chemistry datasets are often small. Spherical convolutional neural networks (SphNNs) and Icosahedral neural networks (IcoNNs) are a type of geometric machine learning algorithm that maintains rotational symmetry. Molecular structure has rotational invariance and is inherently 3-D, and thus we need 3-D encoding methods to input molecular structure into machine learning. In this paper I present Icospherical Chemical Objects (ICOs) that enable the encoding of 3-D data in a rotationally invariant way which works with spherical or icosahedral neural networks and allows for dataset augmentation. I demonstrate the ICO featurisation method on the following tasks: predicting general molecular properties, predicting solubility of drug like molecules and the protein binding problem and find that ICO and SphNNs perform well on all problems.

Summary

We haven't generated a summary for this paper yet.