Papers
Topics
Authors
Recent
2000 character limit reached

Icospherical Chemical Objects (ICOs) allow for chemical data augmentation and maintain rotational, translation and permutation invariance (2304.07558v1)

Published 15 Apr 2023 in cs.LG

Abstract: Dataset augmentation is a common way to deal with small datasets; Chemistry datasets are often small. Spherical convolutional neural networks (SphNNs) and Icosahedral neural networks (IcoNNs) are a type of geometric machine learning algorithm that maintains rotational symmetry. Molecular structure has rotational invariance and is inherently 3-D, and thus we need 3-D encoding methods to input molecular structure into machine learning. In this paper I present Icospherical Chemical Objects (ICOs) that enable the encoding of 3-D data in a rotationally invariant way which works with spherical or icosahedral neural networks and allows for dataset augmentation. I demonstrate the ICO featurisation method on the following tasks: predicting general molecular properties, predicting solubility of drug like molecules and the protein binding problem and find that ICO and SphNNs perform well on all problems.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.