Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

RoboREIT: an Interactive Robotic Tutor with Instructive Feedback Component for Requirements Elicitation Interview Training (2304.07538v1)

Published 15 Apr 2023 in cs.RO, cs.HC, and cs.SE

Abstract: [Context] Interviewing stakeholders is the most popular requirements elicitation technique among multiple methods. The success of an interview depends on the collaboration of the interviewee which can be fostered through the interviewer's preparedness and communication skills. Mastering these skills requires experience and practicing interviews. [Problem] Practical training is resource-heavy as it calls for the time and effort of a stakeholder for each student which may not be feasible for a large number of students. [Method] To address this scalability problem, this paper proposes RoboREIT, an interactive Robotic tutor for Requirements Elicitation Interview Training. The humanoid robotic component of RoboREIT responds to the questions of the interviewer, which the interviewer chooses from a set of predefined alternatives for a particular scenario. After the interview session, RoboREIT provides contextual feedback to the interviewer on their performance and allows the student to inspect their mistakes. RoboREIT is extensible with various scenarios. [Results] We performed an exploratory user study to evaluate RoboREIT and demonstrate its applicability in requirements elicitation interview training. The quantitative and qualitative analyses of the users' responses reveal the appreciation of RoboREIT and provide further suggestions about how to improve it. [Contribution] Our study is the first in the literature that utilizes a social robot in requirements elicitation interview education. RoboREIT's innovative design incorporates replaying faulty interview stages and allows the student to learn from mistakes by a second time practicing. All participants praised the feedback component, which is not present in the state-of-the-art, for being helpful in identifying the mistakes. A favorable response rate of 81% for the system's usefulness indicates the positive perception of the participants.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.