Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Simple Combinatorial Construction of the $k^{o(1)}$-Lower Bound for Approximating the Parameterized $k$-Clique (2304.07516v2)

Published 15 Apr 2023 in cs.CC, cs.DM, cs.DS, and math.CO

Abstract: In the parameterized $k$-clique problem, or $k$-Clique for short, we are given a graph $G$ and a parameter $k\ge 1$. The goal is to decide whether there exist $k$ vertices in $G$ that induce a complete subgraph (i.e., a $k$-clique). This problem plays a central role in the theory of parameterized intractability as one of the first W[1]-complete problems. Existing research has shown that even an FPT-approximation algorithm for $k$-Clique with arbitrary ratio does not exist, assuming the Gap-Exponential-Time Hypothesis (Gap-ETH) [Chalermsook et al., FOCS'17 and SICOMP]. However, whether this inapproximability result can be based on the standard assumption of $\mathrm{W} 1\ne \mathrm{FPT}$ remains unclear. The recent breakthrough of Bingkai Lin [STOC'21] and subsequent works by Karthik C.S. and Khot [CCC'22], and by Lin, Ren, Sun Wang [ICALP'22] give a technique that bypasses Gap-ETH, thus leading to the inapproximability ratio of $O(1)$ and $k{o(1)}$ under $\mathrm{W}[1]$-hardness (the first two) and ETH (for the latter one). All the work along this line follows the framework developed by Lin, which starts from the $k$-vector-sum problem and requires some involved algebraic techniques. This paper presents an alternative framework for proving the W[1]-hardness of the $k{o(1)}$-FPT-inapproximability of $k$-Clique. Using this framework, we obtain a gap-producing self-reduction of $k$-Clique without any intermediate algebraic problem. More precisely, we reduce from $(k,k-1)$-Gap Clique to $(qk, q{k-1})$-Gap Clique, for any function $q$ depending only on the parameter $k$, thus implying the $k{o(1)}$-inapproximability result when $q$ is sufficiently large. Our proof is relatively simple and mostly combinatorial. At the core of our construction is a novel encoding of $k$-element subset stemming from the theory of "network coding" and a "Sidon set" representation of a graph.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.