Papers
Topics
Authors
Recent
Search
2000 character limit reached

1-D Residual Convolutional Neural Network coupled with Data Augmentation and Regularization for the ICPHM 2023 Data Challenge

Published 14 Apr 2023 in eess.AS, cs.LG, and cs.SD | (2304.07305v2)

Abstract: In this article, we present our contribution to the ICPHM 2023 Data Challenge on Industrial Systems' Health Monitoring using Vibration Analysis. For the task of classifying sun gear faults in a gearbox, we propose a residual Convolutional Neural Network that operates on raw three-channel time-domain vibration signals. In conjunction with data augmentation and regularization techniques, the proposed model yields very good results in a multi-class classification scenario with real-world data despite its relatively small size, i.e., with less than 30,000 trainable parameters. Even when presented with data obtained from multiple operating conditions, the network is still capable to accurately predict the condition of the gearbox under inspection.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.