Emergent Mind

Abstract

We prove that there is a randomized polynomial-time algorithm that given an edge-weighted graph $G$ excluding a fixed-minor $Q$ on $n$ vertices and an accuracy parameter $\varepsilon>0$, constructs an edge-weighted graph~$H$ and an embedding $\eta\colon V(G)\to V(H)$ with the following properties: * For any constant size $Q$, the treewidth of $H$ is polynomial in $\varepsilon{-1}$, $\log n$, and the logarithm of the stretch of the distance metric in $G$. * The expected multiplicative distortion is $(1+\varepsilon)$: for every pair of vertices $u,v$ of $G$, we have $\mathrm{dist}H(\eta(u),\eta(v))\geq \mathrm{dist}G(u,v)$ always and $\mathrm{Exp}[\mathrm{dist}H(\eta(u),\eta(v))]\leq (1+\varepsilon)\mathrm{dist}G(u,v)$. Our embedding is the first to achieve polylogarithmic treewidth of the host graph and comes close to the lower bound by Carroll and Goel, who showed that any embedding of a planar graph with $\mathcal{O}(1)$ expected distortion requires the host graph to have treewidth $\Omega(\log n)$. It also provides a unified framework for obtaining randomized quasi-polynomial-time approximation schemes for a variety of problems including network design, clustering or routing problems, in minor-free metrics where the optimization goal is the sum of selected distances. Applications include the capacitated vehicle routing problem, and capacitated clustering problems.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.