Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

BS-GAT Behavior Similarity Based Graph Attention Network for Network Intrusion Detection (2304.07226v1)

Published 7 Apr 2023 in cs.CR, cs.LG, and cs.NI

Abstract: With the development of the Internet of Things (IoT), network intrusion detection is becoming more complex and extensive. It is essential to investigate an intelligent, automated, and robust network intrusion detection method. Graph neural networks based network intrusion detection methods have been proposed. However, it still needs further studies because the graph construction method of the existing methods does not fully adapt to the characteristics of the practical network intrusion datasets. To address the above issue, this paper proposes a graph neural network algorithm based on behavior similarity (BS-GAT) using graph attention network. First, a novel graph construction method is developed using the behavior similarity by analyzing the characteristics of the practical datasets. The data flows are treated as nodes in the graph, and the behavior rules of nodes are used as edges in the graph, constructing a graph with a relatively uniform number of neighbors for each node. Then, the edge behavior relationship weights are incorporated into the graph attention network to utilize the relationship between data flows and the structure information of the graph, which is used to improve the performance of the network intrusion detection. Finally, experiments are conducted based on the latest datasets to evaluate the performance of the proposed behavior similarity based graph attention network for the network intrusion detection. The results show that the proposed method is effective and has superior performance comparing to existing solutions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.