Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wasserstein PAC-Bayes Learning: Exploiting Optimisation Guarantees to Explain Generalisation (2304.07048v2)

Published 14 Apr 2023 in stat.ML, cs.LG, and math.OC

Abstract: PAC-Bayes learning is an established framework to both assess the generalisation ability of learning algorithms, and design new learning algorithm by exploiting generalisation bounds as training objectives. Most of the exisiting bounds involve a \emph{Kullback-Leibler} (KL) divergence, which fails to capture the geometric properties of the loss function which are often useful in optimisation. We address this by extending the emerging \emph{Wasserstein PAC-Bayes} theory. We develop new PAC-Bayes bounds with Wasserstein distances replacing the usual KL, and demonstrate that sound optimisation guarantees translate to good generalisation abilities. In particular we provide generalisation bounds for the \emph{Bures-Wasserstein SGD} by exploiting its optimisation properties.

Summary

We haven't generated a summary for this paper yet.