Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

CSP-free adaptive Kriging surrogate model method for reliability analysis with small failure probability (2304.07010v5)

Published 14 Apr 2023 in cs.CE

Abstract: In the field of reliability engineering, the Active learning reliability method combining Kriging and Monte Carlo Simulation (AK-MCS) has been developed and demonstrated to be effective in reliability analysis. However, the performance of AK-MCS is sensitive to the size of Candidate Sample Pool (CSP), particularly for systems with small failure probabilities. To address the limitations of conventional AK-MCS that relies on CSP, this paper proposes a CSP-free AK-MCS. The proposed methodology consists of two stages: surrogate model construction and Monte Carlo simulation for estimating the failure probability. In the stage of surrogate model construction, the surrogate model is iteratively refined based on the representative samples selected by solving the optimization problem facilitated by Particle Swarm Optimization (PSO) algorithm. To achieve an optimal balance between solution accuracy and efficiency, the penalty intensity control and the density control for the experimental design points are introduced to modify the objective function in optimization. The performance of the proposed methodology is evaluated using numerical examples, and results indicate that by leveraging an optimization algorithm to select representative samples, the proposed CSP-free AK-MCS overcomes the limitations of conventional CSP-based AK-MCS and exhibits exceptional performance in addressing small failure probabilities.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube