Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multi-fidelity prediction of fluid flow and temperature field based on transfer learning using Fourier Neural Operator (2304.06972v1)

Published 14 Apr 2023 in physics.flu-dyn, cs.LG, cs.NA, and math.NA

Abstract: Data-driven prediction of fluid flow and temperature distribution in marine and aerospace engineering has received extensive research and demonstrated its potential in real-time prediction recently. However, usually large amounts of high-fidelity data are required to describe and accurately predict the complex physical information, while in reality, only limited high-fidelity data is available due to the high experiment/computational cost. Therefore, this work proposes a novel multi-fidelity learning method based on the Fourier Neural Operator by jointing abundant low-fidelity data and limited high-fidelity data under transfer learning paradigm. First, as a resolution-invariant operator, the Fourier Neural Operator is first and gainfully applied to integrate multi-fidelity data directly, which can utilize the scarce high-fidelity data and abundant low-fidelity data simultaneously. Then, the transfer learning framework is developed for the current task by extracting the rich low-fidelity data knowledge to assist high-fidelity modeling training, to further improve data-driven prediction accuracy. Finally, three typical fluid and temperature prediction problems are chosen to validate the accuracy of the proposed multi-fidelity model. The results demonstrate that our proposed method has high effectiveness when compared with other high-fidelity models, and has the high modeling accuracy of 99% for all the selected physical field problems. Significantly, the proposed multi-fidelity learning method has the potential of a simple structure with high precision, which can provide a reference for the construction of the subsequent model.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube