Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Classification of social media Toxic comments using Machine learning models (2304.06934v1)

Published 14 Apr 2023 in cs.LG, cs.CY, and cs.SI

Abstract: The abstract outlines the problem of toxic comments on social media platforms, where individuals use disrespectful, abusive, and unreasonable language that can drive users away from discussions. This behavior is referred to as anti-social behavior, which occurs during online debates, comments, and fights. The comments containing explicit language can be classified into various categories, such as toxic, severe toxic, obscene, threat, insult, and identity hate. This behavior leads to online harassment and cyberbullying, which forces individuals to stop expressing their opinions and ideas. To protect users from offensive language, companies have started flagging comments and blocking users. The abstract proposes to create a classifier using an Lstm-cnn model that can differentiate between toxic and non-toxic comments with high accuracy. The classifier can help organizations examine the toxicity of the comment section better.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.