Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Machine Perception-Driven Image Compression: A Layered Generative Approach (2304.06896v1)

Published 14 Apr 2023 in eess.IV, cs.AI, cs.CV, and cs.MM

Abstract: In this age of information, images are a critical medium for storing and transmitting information. With the rapid growth of image data amount, visual compression and visual data perception are two important research topics attracting a lot attention. However, those two topics are rarely discussed together and follow separate research path. Due to the compact compressed domain representation offered by learning-based image compression methods, there exists possibility to have one stream targeting both efficient data storage and compression, and machine perception tasks. In this paper, we propose a layered generative image compression model achieving high human vision-oriented image reconstructed quality, even at extreme compression ratios. To obtain analysis efficiency and flexibility, a task-agnostic learning-based compression model is proposed, which effectively supports various compressed domain-based analytical tasks while reserves outstanding reconstructed perceptual quality, compared with traditional and learning-based codecs. In addition, joint optimization schedule is adopted to acquire best balance point among compression ratio, reconstructed image quality, and downstream perception performance. Experimental results verify that our proposed compressed domain-based multi-task analysis method can achieve comparable analysis results against the RGB image-based methods with up to 99.6% bit rate saving (i.e., compared with taking original RGB image as the analysis model input). The practical ability of our model is further justified from model size and information fidelity aspects.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube