Papers
Topics
Authors
Recent
2000 character limit reached

PMI Sampler: Patch Similarity Guided Frame Selection for Aerial Action Recognition (2304.06866v2)

Published 14 Apr 2023 in cs.CV

Abstract: We present a new algorithm for selection of informative frames in video action recognition. Our approach is designed for aerial videos captured using a moving camera where human actors occupy a small spatial resolution of video frames. Our algorithm utilizes the motion bias within aerial videos, which enables the selection of motion-salient frames. We introduce the concept of patch mutual information (PMI) score to quantify the motion bias between adjacent frames, by measuring the similarity of patches. We use this score to assess the amount of discriminative motion information contained in one frame relative to another. We present an adaptive frame selection strategy using shifted leaky ReLu and cumulative distribution function, which ensures that the sampled frames comprehensively cover all the essential segments with high motion salience. Our approach can be integrated with any action recognition model to enhance its accuracy. In practice, our method achieves a relative improvement of 2.2 - 13.8% in top-1 accuracy on UAV-Human, 6.8% on NEC Drone, and 9.0% on Diving48 datasets.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.