Papers
Topics
Authors
Recent
2000 character limit reached

Evaluation of Social Biases in Recent Large Pre-Trained Models

Published 13 Apr 2023 in cs.CL, cs.CY, and cs.LG | (2304.06861v1)

Abstract: Large pre-trained LLMs are widely used in the community. These models are usually trained on unmoderated and unfiltered data from open sources like the Internet. Due to this, biases that we see in platforms online which are a reflection of those in society are in turn captured and learned by these models. These models are deployed in applications that affect millions of people and their inherent biases are harmful to the targeted social groups. In this work, we study the general trend in bias reduction as newer pre-trained models are released. Three recent models ( ELECTRA, DeBERTa, and DistilBERT) are chosen and evaluated against two bias benchmarks, StereoSet and CrowS-Pairs. They are compared to the baseline of BERT using the associated metrics. We explore whether as advancements are made and newer, faster, lighter models are released: are they being developed responsibly such that their inherent social biases have been reduced compared to their older counterparts? The results are compiled and we find that all the models under study do exhibit biases but have generally improved as compared to BERT.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.