Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Heterogeneous Oblique Double Random Forest (2304.06788v1)

Published 13 Apr 2023 in cs.LG

Abstract: The decision tree ensembles use a single data feature at each node for splitting the data. However, splitting in this manner may fail to capture the geometric properties of the data. Thus, oblique decision trees generate the oblique hyperplane for splitting the data at each non-leaf node. Oblique decision trees capture the geometric properties of the data and hence, show better generalization. The performance of the oblique decision trees depends on the way oblique hyperplanes are generate and the data used for the generation of those hyperplanes. Recently, multiple classifiers have been used in a heterogeneous random forest (RaF) classifier, however, it fails to generate the trees of proper depth. Moreover, double RaF studies highlighted that larger trees can be generated via bootstrapping the data at each non-leaf node and splitting the original data instead of the bootstrapped data recently. The study of heterogeneous RaF lacks the generation of larger trees while as the double RaF based model fails to take over the geometric characteristics of the data. To address these shortcomings, we propose heterogeneous oblique double RaF. The proposed model employs several linear classifiers at each non-leaf node on the bootstrapped data and splits the original data based on the optimal linear classifier. The optimal hyperplane corresponds to the models based on the optimized impurity criterion. The experimental analysis indicates that the performance of the introduced heterogeneous double random forest is comparatively better than the baseline models. To demonstrate the effectiveness of the proposed heterogeneous double random forest, we used it for the diagnosis of Schizophrenia disease. The proposed model predicted the disease more accurately compared to the baseline models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.