Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Remote Sensing Change Detection With Transformers Trained from Scratch (2304.06710v1)

Published 13 Apr 2023 in cs.CV

Abstract: Current transformer-based change detection (CD) approaches either employ a pre-trained model trained on large-scale image classification ImageNet dataset or rely on first pre-training on another CD dataset and then fine-tuning on the target benchmark. This current strategy is driven by the fact that transformers typically require a large amount of training data to learn inductive biases, which is insufficient in standard CD datasets due to their small size. We develop an end-to-end CD approach with transformers that is trained from scratch and yet achieves state-of-the-art performance on four public benchmarks. Instead of using conventional self-attention that struggles to capture inductive biases when trained from scratch, our architecture utilizes a shuffled sparse-attention operation that focuses on selected sparse informative regions to capture the inherent characteristics of the CD data. Moreover, we introduce a change-enhanced feature fusion (CEFF) module to fuse the features from input image pairs by performing a per-channel re-weighting. Our CEFF module aids in enhancing the relevant semantic changes while suppressing the noisy ones. Extensive experiments on four CD datasets reveal the merits of the proposed contributions, achieving gains as high as 14.27\% in intersection-over-union (IoU) score, compared to the best-published results in the literature. Code is available at \url{https://github.com/mustansarfiaz/ScratchFormer}.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube