Papers
Topics
Authors
Recent
Search
2000 character limit reached

Variations of Squeeze and Excitation networks

Published 11 Apr 2023 in cs.CV, cs.LG, and cs.NE | (2304.06502v2)

Abstract: Convolutional neural networks learns spatial features and are heavily interlinked within kernels. The SE module have broken the traditional route of neural networks passing the entire result to next layer. Instead SE only passes important features to be learned with its squeeze and excitation (SE) module. We propose variations of the SE module which improvises the process of squeeze and excitation and enhances the performance. The proposed squeezing or exciting the layer makes it possible for having a smooth transition of layer weights. These proposed variations also retain the characteristics of SE module. The experimented results are carried out on residual networks and the results are tabulated.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.