Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Algorithms and Hardware for Efficient Processing of Logic-based Neural Networks (2304.06299v1)

Published 13 Apr 2023 in cs.AR

Abstract: Recent efforts to improve the performance of neural network (NN) accelerators that meet today's application requirements have given rise to a new trend of logic-based NN inference relying on fixed-function combinational logic (FFCL). This paper presents an innovative optimization methodology for compiling and mapping NNs utilizing FFCL into a logic processor. The presented method maps FFCL blocks to a set of Boolean functions where Boolean operations in each function are mapped to high-performance, low-latency, parallelized processing elements. Graph partitioning and scheduling algorithms are presented to handle FFCL blocks that cannot straightforwardly fit the logic processor. Our experimental evaluations across several datasets and NNs demonstrate the superior performance of our framework in terms of the inference throughput compared to prior art NN accelerators. We achieve 25x higher throughput compared with the XNOR-based accelerator for VGG16 model that can be amplified 5x deploying the graph partitioning and merging algorithms.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube