Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Model-based Dynamic Shielding for Safe and Efficient Multi-Agent Reinforcement Learning (2304.06281v1)

Published 13 Apr 2023 in cs.LG, cs.AI, cs.MA, and cs.RO

Abstract: Multi-Agent Reinforcement Learning (MARL) discovers policies that maximize reward but do not have safety guarantees during the learning and deployment phases. Although shielding with Linear Temporal Logic (LTL) is a promising formal method to ensure safety in single-agent Reinforcement Learning (RL), it results in conservative behaviors when scaling to multi-agent scenarios. Additionally, it poses computational challenges for synthesizing shields in complex multi-agent environments. This work introduces Model-based Dynamic Shielding (MBDS) to support MARL algorithm design. Our algorithm synthesizes distributive shields, which are reactive systems running in parallel with each MARL agent, to monitor and rectify unsafe behaviors. The shields can dynamically split, merge, and recompute based on agents' states. This design enables efficient synthesis of shields to monitor agents in complex environments without coordination overheads. We also propose an algorithm to synthesize shields without prior knowledge of the dynamics model. The proposed algorithm obtains an approximate world model by interacting with the environment during the early stage of exploration, making our MBDS enjoy formal safety guarantees with high probability. We demonstrate in simulations that our framework can surpass existing baselines in terms of safety guarantees and learning performance.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.