Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SAM Struggles in Concealed Scenes -- Empirical Study on Segment Anything (2304.06022v4)

Published 12 Apr 2023 in cs.CV

Abstract: Segmenting anything is a ground-breaking step toward artificial general intelligence, and the Segment Anything Model (SAM) greatly fosters the foundation models for computer vision. We could not be more excited to probe the performance traits of SAM. In particular, exploring situations in which SAM does not perform well is interesting. In this report, we choose three concealed scenes, i.e., camouflaged animals, industrial defects, and medical lesions, to evaluate SAM under unprompted settings. Our main observation is that SAM looks unskilled in concealed scenes.

Citations (85)

Summary

We haven't generated a summary for this paper yet.