Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Fast vehicle detection algorithm based on lightweight YOLO7-tiny (2304.06002v3)

Published 12 Apr 2023 in cs.CV

Abstract: The swift and precise detection of vehicles plays a significant role in intelligent transportation systems. Current vehicle detection algorithms encounter challenges of high computational complexity, low detection rate, and limited feasibility on mobile devices. To address these issues, this paper proposes a lightweight vehicle detection algorithm based on YOLOv7-tiny (You Only Look Once version seven) called Ghost-YOLOv7. The width of model is scaled to 0.5 and the standard convolution of the backbone network is replaced with Ghost convolution to achieve a lighter network and improve the detection speed; then a self-designed Ghost bi-directional feature pyramid network (Ghost-BiFPN) is embedded into the neck network to enhance feature extraction capability of the algorithm and enriches semantic information; and a Ghost Decouoled Head (GDH) is employed for accurate prediction of vehicle location and species; finally, a coordinate attention mechanism is introduced into the output layer to suppress environmental interference. The WIoU loss function is employed to further enhance the detection accuracy. Ablation experiments results on the PASCAL VOC dataset demonstrate that Ghost-YOLOv7 outperforms the original YOLOv7-tiny model. It achieving a 29.8% reduction in computation, 37.3% reduction in the number of parameters, 35.1% reduction in model weights, 1.1% higher mean average precision (mAP), the detection speed is higher 27FPS compared with the original algorithm. Ghost-YOLOv7 was also compared on KITTI and BIT-vehicle datasets as well, and the results show that this algorithm has the overall best performance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.