Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Object-agnostic Affordance Categorization via Unsupervised Learning of Graph Embeddings (2304.05989v1)

Published 30 Mar 2023 in cs.AI, cs.CV, and cs.LG

Abstract: Acquiring knowledge about object interactions and affordances can facilitate scene understanding and human-robot collaboration tasks. As humans tend to use objects in many different ways depending on the scene and the objects' availability, learning object affordances in everyday-life scenarios is a challenging task, particularly in the presence of an open set of interactions and objects. We address the problem of affordance categorization for class-agnostic objects with an open set of interactions; we achieve this by learning similarities between object interactions in an unsupervised way and thus inducing clusters of object affordances. A novel depth-informed qualitative spatial representation is proposed for the construction of Activity Graphs (AGs), which abstract from the continuous representation of spatio-temporal interactions in RGB-D videos. These AGs are clustered to obtain groups of objects with similar affordances. Our experiments in a real-world scenario demonstrate that our method learns to create object affordance clusters with a high V-measure even in cluttered scenes. The proposed approach handles object occlusions by capturing effectively possible interactions and without imposing any object or scene constraints.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.