Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Towards Understanding How Data Augmentation Works with Imbalanced Data (2304.05895v1)

Published 12 Apr 2023 in cs.LG

Abstract: Data augmentation forms the cornerstone of many modern machine learning training pipelines; yet, the mechanisms by which it works are not clearly understood. Much of the research on data augmentation (DA) has focused on improving existing techniques, examining its regularization effects in the context of neural network over-fitting, or investigating its impact on features. Here, we undertake a holistic examination of the effect of DA on three different classifiers, convolutional neural networks, support vector machines, and logistic regression models, which are commonly used in supervised classification of imbalanced data. We support our examination with testing on three image and five tabular datasets. Our research indicates that DA, when applied to imbalanced data, produces substantial changes in model weights, support vectors and feature selection; even though it may only yield relatively modest changes to global metrics, such as balanced accuracy or F1 measure. We hypothesize that DA works by facilitating variances in data, so that machine learning models can associate changes in the data with labels. By diversifying the range of feature amplitudes that a model must recognize to predict a label, DA improves a model's capacity to generalize when learning with imbalanced data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.