Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Automatic Aortic Valve Pathology Detection from 3-Chamber Cine MRI with Spatio-Temporal Attention Maps (2304.05885v2)

Published 12 Apr 2023 in eess.IV

Abstract: The assessment of aortic valve pathology using magnetic resonance imaging (MRI) typically relies on blood velocity estimates acquired using phase contrast (PC) MRI. However, abnormalities in blood flow through the aortic valve often manifest by the dephasing of blood signal in gated balanced steady-state free precession (bSSFP) scans (Cine MRI). We propose a 3D classification neural network (NN) to automatically identify aortic valve pathology (aortic regurgitation, aortic stenosis, mixed valve disease) from Cine MR images. We train and test our approach on a retrospective clinical dataset from three UK hospitals, using single-slice 3-chamber cine MRI from N = 576 patients. Our classification model accurately predicts the presence of aortic valve pathology (AVD) with an accuracy of 0.85 +/- 0.03 and can also correctly discriminate the type of AVD pathology (accuracy: 0.75 +/- 0.03). Gradient-weighted class activation mapping (Grad-CAM) confirms that the blood pool voxels close to the aortic root contribute the most to the classification. Our approach can be used to improve the diagnosis of AVD and optimise clinical CMR protocols for accurate and efficient AVD detection.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.