Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On Parallel k-Center Clustering (2304.05883v1)

Published 12 Apr 2023 in cs.DS

Abstract: We consider the classic $k$-center problem in a parallel setting, on the low-local-space Massively Parallel Computation (MPC) model, with local space per machine of $\mathcal{O}(n{\delta})$, where $\delta \in (0,1)$ is an arbitrary constant. As a central clustering problem, the $k$-center problem has been studied extensively. Still, until very recently, all parallel MPC algorithms have been requiring $\Omega(k)$ or even $\Omega(k n{\delta})$ local space per machine. While this setting covers the case of small values of $k$, for a large number of clusters these algorithms require large local memory, making them poorly scalable. The case of large $k$, $k \ge \Omega(n{\delta})$, has been considered recently for the low-local-space MPC model by Bateni et al. (2021), who gave an $\mathcal{O}(\log \log n)$-round MPC algorithm that produces $k(1+o(1))$ centers whose cost has multiplicative approximation of $\mathcal{O}(\log\log\log n)$. In this paper we extend the algorithm of Bateni et al. and design a low-local-space MPC algorithm that in $\mathcal{O}(\log\log n)$ rounds returns a clustering with $k(1+o(1))$ clusters that is an $\mathcal{O}(\log*n)$-approximation for $k$-center.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.